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Most approaches to computer vision can be thought of as lying some-
where on a continuum between generative and discriminative. Although each
approach has had its successes, recent advances have favored discriminative
methods, most notably the convolutional neural network. Still, there is some
doubt about whether this approach will scale to a human-level performance
given the numbers of samples that are needed to train state-of-the-art sys-
tems. Here, we focus on the generative or Bayesian approach, which is more
model based and, in theory, more efficient. Challenges include latent-variable
modeling, computationally efficient inference, and data modeling. We restrict
ourselves to the problem of data modeling, which is possibly the most daunt-
ing, and specifically to the generative modeling of image patches. We formu-
late a new approach, which can be broadly characterized as an application
of “conditional modeling,” designed to sidestep the high-dimensionality and
complexity of image data. A series of experiments, learning appearance mod-
els for faces and parts of faces, illustrates the flexibility and effectiveness of
the approach.

1. Introduction. Lately, discriminative approaches to computer vision, most-
ly employing convolutional neural networks, have dominated academic research
and industrial applications. Whether biological-level performance can be achieved
by these approaches remains a matter of debate. The key issue is context—the sys-
tem of hierarchical relationships that humans rely on, effortlessly, to disambiguate
occlusions and local uncertainties and to make sense of the identities, attributes,
and poses of parts that make up a whole, such as the arrangements of edges in
a contour, leaves in a tree, pedestrians walking or talking together, tiles making
up a roof or bricks and windows making up a building. Existing systems cannot
fully exploit these part/whole relationships. Whereas, in principle, context can be
learned without explicit models, the numbers of samples needed to train state-of-
the-art systems often exceed the numbers available to an individual in a lifetime,
and are already challenging today’s big-data repositories. The root of the problem
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is that the number of meaningful contextual arrangements grows very rapidly with
the number of components, or parts, in a composition. Discriminative approaches
may not scale to human performance.

Generative hierarchical models, with grammar-like structures, appear to have
the right architectures to model context and address the unfavorable combinatorics.
But these and other Bayesian methods rely on, and are particularly sensitive to,
models of the data, that is, the conditional distributions on appearance given the
presence of a contour, a texture, or, in general, a composition of parts making up a
recognizable unit. Appearance modeling remains a major impediment to progress
of the Bayesian (generative) approach.

Generative models of high-dimensional data, such as whole images or image
patches, invariably encounter issues of data sparsity and computational complexity.
Among the most common approaches to addressing these difficulties is through
dimensionality reduction, which amounts to replacing the raw high-dimensional
data with a small set of low-dimensional feature values. Obviously, the choice of
features is critical. In this paper, we provide a mathematically coherent approach to
learning features within a fully generative framework, meaning that the resulting
probability distribution is on the pixel data rather than on the features per se. Since
features are almost never sufficient to define the pixel data itself, our approach
avoids the inherent loss of information incurred by modeling extracted features in
place of raw pixel data.

The main idea, which amounts to an application of conditional modeling [cf.
Reid (1995)], is to define a category-specific low-dimensional distribution on fea-
tures, and then to assume that the conditional distribution on pixel intensities given
the values of the features is universal, that is, independent of the category. The
result is a category-specific distribution on pixel data that is a function of the fea-
tures. One consequence is that the features themselves, which may have been un-
specified, can be estimated using traditional statistical methods, such as maximum
likelihood.

Formally, we consider image patches, such as a 30 × 40 rectangle of pixel in-
tensities, denoted Y . (We will work with gray-level images, though no important
changes are needed to adapt to color images.) The task is to develop a model for
the distribution of Y given that it comes from a particular category of objects, say
the right eye of a human face. In general, real images have complex dependency
structures that are extremely difficult to model, even for a modest-sized image
patch with only 1200 pixels. But suppose that there is a low-dimensional func-
tion (aka “statistic” or “feature”) s = s(y) whose value is particularly relevant to
the determination of whether or not the observation Y = y is an observation of a
patch from the category of interest (e.g., right eyes). A time-honored example is
s(y) = corr(T , y), where T is a template, perhaps a prototypical right eye, and corr
is the normalized correlation (s ∈ [−1,1]). Given the category of interest, there is
some (typically unknown) distribution pS(s) on the random variable S � s(Y ),
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and we can always use this to factor the distribution on Y :

(1.1) pY (y) = pS

(
s(y)

)
pY

(
y|S = s(y)

)
.

By assumption, s is low dimensional, and, therefore, it is a relatively easy job
to estimate its distribution, pS(s). We will generally assume a parametric form,
pS(s) = pS(s; θ), although semiparametric or even nonparametric estimation
would be reasonable options, depending on the dimensionality, which is just one
for the example s(y) = corr(T , y). The remaining dimensions are in the condi-
tional distribution, pY (y|S = s), which must be estimated for each value of s. On
the other hand, if we think of s(Y ) as carrying the bulk of the category-specific
information about Y , then we can think of pY (y|S = s) as capturing those aspects
of the spatial arrangements of pixel intensities that are common across categories,
having to do with neighborhood relationships, spacial scaling, the appearance of
shadows and reflections, and so on. In other words, with a proper choice of s we
can think of pY (y|S = s) as being derived from some universal distribution, say
po

Y (y): given po
Y (y), we replace pY (y|S = s) by po

Y (y|S = s) and (1.1) by

(1.2) pY (y) = pS

(
s(y)

)
po

Y

(
y|S = s(y)

)
.

To look at this from another direction, we are assuming the existence of a kind
of background distribution, po

Y (y), some of whose aspects are nearly universal to
image patches, and in particular independent of the category of the patch. Then,
given a particular statistic s(y) and distribution pS(s), associated with a particular
category of image patch, we seek a distribution on Y under which S = s(Y ) has
distribution pS(s) [i.e., s(Y ) ∼ pS(s)] but which is otherwise similar to po

Y (y).
If we were to take “similar” to mean closest in the sense of Kullback–Leibler
divergence, that is, minimizing

D
(
po

Y ||pY

)
�

∫
po

Y (y) log
po

Y (y)

pY (y)
dy

then we would recover (1.2), that is,

pY (y) = pS

(
s(y)

)
po

Y

(
y|S = s(y)

) = argmin
p̃Y :s(Y )∼pS

D
(
po

Y ||p̃Y

)
.

In fact, we arrive at the same expression for pY when D(po
Y ||pY ) is replaced by

D(pY ||po
Y ), as is shown, by straightforward calculation, in Section A.1 of the Ap-

pendix.
As an example, if we were to choose the uniform distribution to serve as a

background model (so that under po
Y , Y has independent and uniformly distributed

pixel intensities), then the category-specific model, (1.2), becomes the maximum
entropy distribution subject to the category-specific constraint, s(Y ) ∼ pS . In other
words, maximum-entropy models [e.g., Zhu, Wu and Mumford (1998)] are a spe-
cial case. Alternatively, we could define the background distribution, po, implic-
itly, to be the distribution on a set of “unstructured” patches from real images, say
the set of all uniformly smooth patches from all natural images available on the
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Internet. As it turns out (see Section 2), estimation of features and parameters in
pY , as well as the classification of patches under the model pY , depend on the
background only through po

S , which can be estimated, straightforwardly, by sam-
pling background patches, provided that s is low dimensional.

Imagine now that we have a sample of patches from a category of interest, and
we have identified a relevant low-dimensional statistic s, which may depend on a
parameter vector, φ: s(y) = s(y;φ). In the case of the correlation statistic, for ex-
ample, s(y) = corr(T , y) and φ = T . We might, furthermore, model the category-
specific distribution on S = s(Y ) in a parametric form, in which case we write
pS(s) = pS(s; θ). The likelihood of θ and φ, given N patches y1, . . . , yN sampled
from the category, is

(1.3)

L(y1, . . . , yN ; θ,φ) =
N∏

k=1

pY (yk)

=
N∏

k=1

pS

(
s(yk;φ); θ)

po
Y

(
yk|S = s(yk;φ)

)
which we will seek to maximize over θ and φ, thereby learning both the category-
specific features (through φ) and their category-specific distributions (through θ )
in a fully generative model.

It is tempting to sidestep the high-dimensional conditional distribution, po
Y (yk|

S = s(yk;φ)), by replacing (1.3) with a likelihood that depends only on the feature
values, s(yk),

(1.4) L(y1, . . . , yN ; θ,φ) =
N∏

k=1

pS

(
s(yk;φ); θ)

as though we had observed the values of the features, and their associated statistics,
rather than the pixel intensities themselves. Whereas (1.4) is consistent for θ , it is
not consistent for φ, which is not surprising given that the modified likelihood
ignores the dependency of the conditional distribution on the parameter φ. Put
differently, s is sufficient for θ but not for φ.2 See Section 4.2 for an experiment
comparing the results of using (1.4) instead of (1.3). Another approach to avoiding
the conditional distribution is to attempt to craft a model of the pixel data directly
from the model of the statistic s: if we simply renormalize pS(s), then we have a
proper parametric form for a data distribution

(1.5) pY (y) = 1

Z(θ,φ)
pS

(
s(y;φ); θ)

.

But now the distribution of the statistic, S, is no longer pS . It is, instead, of the
form c(s)

Z(θ,φ)
pS(s), where c(s) is a combinatorial factor (essentially the “entropic

2For fixed φ, θ is a maximum of (1.3) if and only if it is also a maximum of (1.4), but for fixed θ ,
the maxima can occur at entirely different values of φ.



MAXIMUM LIKELIHOOD FEATURES FOR GENERATIVE IMAGE MODELS 1279

term”), representing the number of assignments of pixel intensities, y, for which
the statistic has the particular value s. If we were, for example, to design or learn
T under the reasonable expectation that the probability of s � corr(T , y) is mono-
tonic in s [e.g., pS(s) ∝ e−λ(1−s), λ > 0], then under pY , in (1.5), the distribution
on S = s(Y ) will typically not be monotonic, since s ∈ [−1,1] and c(s) is strongly
peaked at s = 0. This is problematic since monotonicity motivated the choice of
pS in the first place.

Although the approach is quite general, most of our examples will involve the
correlation statistic, s = corr(T , y), in which case the estimated parameter φ will
be the template T . Modeling image patches through templates is a common prac-
tice in computer vision. Examples include Gaussian mixture models, in which an
image patch is viewed as a sample from a mixture of Gaussian distributions; a dif-
ferent template, serving as the mean, is learned for each component of the mixture
[e.g., Frey (2003), Frey and Jojic (1999), Kannan, Jojic and Frey (2002)]. Ullman
and his collaborators [Borenstein and Ullman (2002), Sali and Ullman (1999),
Ullman, Sali and Vidal-Niquet (2001)] selected templates from image patches that
have the highest mutual information with the object category. They use these tem-
plates for object classification and segmentation. Others have defined candidate
templates by running interest-point detectors on training sets, and then selecting
from the surrounding image patches; see Agarwal, Awan and Roth (2004), Fergus,
Perona and Zisserman (2003), Leibe and Schiele (2003), and Weber, Welling and
Perona (2000). Heisele, Serre and Poggio (2007) and Heisele et al. (2001) designed
a SVM algorithm to select patches from a collection of manually chosen seed
points. The idea is to learn templates for facial parts that minimize the foreground-
versus-background classification error. Si and Zhu (2012) used an information-
based projection pursuit to select informative heterogeneous image patches as tem-
plates. The reference model, used for initialization, can be viewed as playing a role
very similar to our background model. Allassonnière, Amit and Trouvé (2007) de-
veloped a Bayesian framework for deformable templates, which could be learned
through a version of the EM algorithm. The approach was demonstrated by imple-
menting a system for handwritten digit recognition. Sabuncu, Balci and Golland
(2008) later adapted the method to the problem of registering and clustering whole
brain MR images. The resulting templates defined clusters of individuals that were
interpretable through their correlations with age and pathology.

The generative models developed by Amit and collaborators [e.g., Amit, Geman
and Fan (2004), Amit and Trouvé (2006, 2007)] are also closely related. These
models generate a binary edge map rather than pixel intensities per se, but as
pointed out in Amit, Geman and Fan (2004), they can also be viewed as gener-
ating intensities by assuming a uniform distribution on the set of intensity images
consistent with the generated values of the binary features. In this direction, the
intensity differences that are thresholded by Amit et al. to form edges could be
generalized to zero-mean templates (“differential operators”), which could then be
learned from data under the assumption of a conditionally uniform distribution.
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Many of the other aspects of our approach (as discussed in Sections 2–4) would
then be in place, including the use of mixtures over poses (aka “spreading” in Amit
et al.) and over templates [Amit and Trouvé (2006)].

We begin the next section, Section 2, by observing that the likelihood equations
can be manipulated to depend on the low-dimensional distribution po

S(s) rather
than the high-dimensional distribution po

Y (y|S = s(y)) that appears in (1.3). We
observe, furthermore, that with no important changes the approach generalizes to
mixture models, which will be used in Section 4 to estimate mixtures over statis-
tics, s, as well as mixtures over poses (translations, scales, and rotations). In Sec-
tion 3, we focus on the particulars of the estimation problem for the special case
in which the chosen statistics are normalized correlations, and we formulate three
background models for later comparison. The results from a variety of experi-
ments are discussed in Section 4, including maximum-likelihood features learned
within mixture models for noses and eyes, coarse features learned for whole faces,
learning mixture models for patches drawn from natural images, the use of PCA
templates in a generative model, and an approach to drawing samples from these
models. Section 5 concludes with a summary and some challenges.

2. Background factoring, likelihood ratios, and the inclusion of mixtures.
The goal is to learn both φ and θ in the category-specific model pY (y) =
pS(s(y;φ); θ)po

Y (y|S = s(y;φ)), given a sample of image patches, y1, . . . , yN ,
from the category of interest. If we happen to know φ, then s(y;φ) is a suffi-
cient statistic for θ , and, as already observed, the maximum-likelihood estimator
is the maximizer of (1.4). On the other hand, if φ is unknown then the likelihood
is given by equation (1.3), which includes the problematic conditional distribution
po

Y (y|S = s(y;φ)). This is no doubt a complicated distribution, in that po
Y defines

the small fraction of possible patches that are likely to actually show up in real
images—those with a measure of continuity across neighboring pixels, along with
the occasional specular reflection, shadow boundary, and so on. Of course, we can
always factor po

Y as

(2.1) po
Y (y) = po

S

(
s(y;φ)

)
po

Y

(
y|S = s(y;φ)

)
.

Appearances aside, po
Y itself depends on neither θ nor φ. We can then rewrite the

likelihood, (1.3), as

(2.2)

L(y1, . . . , yN ; θ,φ) =
N∏

k=1

pS

(
s(yk;φ); θ)

po
Y

(
yk|S = s(yk;φ)

)

= po
Y1:N (y1:N)

N∏
k=1

pS(s(yk;φ); θ)

po
S(s(yk;φ))

,

where po
Y1:N (y1:N) is shorthand for

∏N
k=1 po

Y (yk), and is independent of the pa-

rameters. The point being that the ratio,
∏N

k=1 pS(s(yk;φ); θ)/po
S(s(yk;φ)), is
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much more manageable than (1.3), at least when s is low dimensional (e.g., the
one-dimensional correlation with a template φ = T ). Depending on how the back-
ground is conceived (see the discussion in the following section, Section 3), we
typically have an inexhaustible supply of background patches, which makes it a
relatively easy matter to estimate po

Y (s(yk;φ)) for any given value of φ.
Unless it is severely under-sampled, a typical category, such as our prototypical

example, right eyes, is much too rich to model through a single, one-dimensional
statistic. A more sensible approach is to use a mixture of models, of the same
type as (1.2), but mixed over multiple statistics: s(y) → {sm(y)}m∈{1,...,M}. Each
mixing component requires its own features and parameters [sm(y) → sm(y;φm),
pSm(sm(y;φm)) → pSm(sm(y;φm); θm)], and its own mixing probability εm,m =
1, . . . ,M , leading to a more comprehensive category-specific patch model:

pY (y) =
M∑

m=1

εmpSm

(
sm(y;φm); θm

)
po

Y

(
y|Sm = sm(y;φm)

)
.

This same framework accommodates pose, so that a given statistic (say template-
based) appears repeatedly in the mixture, for example, as an ensemble of rotations,
scales, and within-patch translations of a given template. Various kinds of mixtures
will be explored, experimentally, in Section 4.

The factorization of the background model, (2.1), can be used promiscuously
for each of the statistics sm,m = 1, . . . ,M , leading to the mixture-based general-
ization of (2.2):

(2.3)

L
(
y1, . . . , yN ; {φm, θm, εm}Mm=1

)

=
N∏

k=1

M∑
m=1

εmpSm

(
sm(yk;φm); θm

)
po

Y

(
yk|Sm = sm(yk;φm)

)

= po
Y1:N (y1:N)

N∏
k=1

M∑
m=1

εm

pSm(sm(yk;φm); θm)

po
Sm

(sm(yk;φm))
.

We note, finally, that comparing categories, as in a classification experiment, is
simply a matter of applying the Neyman–Pearson lemma and exploiting these same
factorizations to avoid high-dimensional conditional distributions. For example, a
test for “category 1,” with data model p1

Y (y), against “category 2,” with data model
p2

Y (y), is made by thresholding on the ratio:

p1
Y (y)

p2
Y (y)

= p1
Y (y)/po

Y (y)

p2
Y (y)/po

Y (y)

=
∑M1

m=1 ε1
mp1

S1
m
(s1

m(y;φ1
m); θ1

m)/po
S1

m
(s1

m(y;φ1
m))∑M2

m=1 ε2
mp2

S2
m
(s2

m(y;φ2
m); θ2

m)/po
S2

m
(s2

m(y;φ2
m))

,



1282 CHANG, BORENSTEIN, ZHANG AND GEMAN

where y is the observed patch and, as needed, the superscript 1 or 2 has been used
to differentiate category-specific variables. Evidently, absent additional assump-
tions, a proper decision between object categories will need to take into account
the background distributions on the category-specific sufficient statistics.

3. Normalized correlation, background models, estimation. In anticipa-
tion of the experiments in Section 4, we will focus on the specific choice of the
correlation statistic for the features, sm,m = 1, . . . ,M , and examine three candi-
date background distributions. Given a chosen set of features and a background
model, we discuss the computational problem of maximizing the likelihood, (2.3),
and propose some iterative algorithms for later experimentation.

3.1. Normalized correlation. Mostly, we have experimented with the particu-
lar statistic s(y) = corr(T , y): the template T is then the “parameter” φ that defines
the “feature” s. Normalized correlation is commonly used as a feature, largely be-
cause it is invariant to linear transformations of the pixel’s intensities, making it
robust to illumination artifacts.3 Let n be the number of pixels in the patch, y.
Without loss of generality, we can restrict T to have mean zero [ 1

n

∑
i T (i) = 0,

where i indexes the elements of the array] and variance one [ 1
n

∑
i T (i)2 = 1], in

which case

s(y) = s(y;T ) = 〈T ,y〉
σ̂ (y)

∈ [−1,1],

where 〈·, ·〉 is inner product and σ̂ (y)2 = 1
n

∑
i (y(i) − ȳ)2 is the sample variance.

More generally, we are interested in a mixture of models for some target cate-
gory, one model for each of M templates, in which case

(3.1) pY (y) =
M∑

m=1

εmpSm

(
sm(y)

)
po

Y

(
y|Sm = sm(y)

)
,

where sm(y) = corr(Tm, y). If we think of the templates as prototypical examples
of objects in the category, then it is natural to try a model for pSm(s) which is a
monotone increasing function on [−1,1]. We have used the exponential function:

(3.2) pSm(s) = αλme−λm(1−s),

3Of course, there are many other statistics that are robust to illumination and worth exploring,
depending on the application, such as Spearman’s ρ and Kendall’s τ , which are in fact invariant to
all rank-preserving transformations, or statistics that include “nuisance parameters,” responsible for
normalizing the location or scale of the intensity distribution in a local image patch. We make note
of the fact that the methods we are advocating, and in particular the factorizations that they rely on,
do not depend on the particulars of the chosen statistics.
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where, for each m = 1, . . . ,M , λm > 0 and

αλm =
(∫ 1

s=−1
e−λm(1−s) ds

)−1
= λm

1 − e−2λm

is the normalizing constant. Or, to make the connection to the more general no-
tation of Section 2, we take φm = Tm and θm = λm. Then, according to (2.3),
the maximum likelihood estimators for the parameters (i.e., for the M templates,
{Tm}m=1,...,M , and the 2M scalars, {λm, εm}m=1,...,M ), given a sample y1, . . . , yN

of patches from the target category, can be found by maximizing

(3.3)
N∏

k=1

M∑
m=1

εm

λm

1−e−2λm
e−λm(1−sm(yk))

po
Sm

(sm(yk))
,

where ε1, . . . , εM are constrained to define a probability mass function, and
sm(yk) = corr(Tm, yk).

Before turning to background models, we wish to make a final observation about
the appropriateness of the exponential model or, for that matter, anything mono-
tone on [−1,1]. If, after training, we look at the empirical distribution on Sm(y),
using, say, y = y1, . . . , yN , we find that it is indeed monotone increasing from −1
until entering a small neighborhood near the value 1, at which point it rapidly de-
creases to zero. This is because of the “entropic” or “combinatorial” term; there
are very few ways to make the correlation nearly 1. On the other hand, such image
patches are extremely rare and we have noticed little or no effect on performance
when using a simple and convenient (reverse) exponential instead of a more ap-
propriate but complex parametric form.

3.2. Background models. To complete the formulation, we need to specify a
background model po

Y (y), or, at the least, its marginalized distribution on each of
the M random variables Sm = corr(Tm,Y ), m = 1, . . . ,M . We have experimented
with three background models. Many variations are plausible, and, not surpris-
ingly, better models produce better results (see Section 4).

i. Independent and identically distributed pixel intensities (“i.i.d. background
model”). Of course, backgrounds are not i.i.d., but this is a convenient place to
start. Let n be the size of the image region being modeled, as measured by the
total number of pixels, for example, n = 1200 for the 30 × 40 sized patches used
in the experiments with right eye appearance modeling reported in Section 4.1.
Then, by an application of the (Lyapunov) central limit theorem (Section A.2 of
the Appendix), corr(T , y) is approximately normal, with mean zero and variance
1/n. Hence, we approximate po

Sm
(sm(yk)) by

(3.4)
√

n

2π
e− nsm(yk)2

2 .
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ii. Smooth patches drawn from natural images (“natural-image background
model”). If we think of the goal of modeling patches as creating a library of ap-
pearance models for common parts and objects (edges, boundaries, eyes, mouths,
faces, and so on), and “background” as referring to regions that are essentially un-
structured and less informative, or at least less semantically meaningful, then we
might define, more-or-less by fiat, background patches to be those that are absent
from the sharp boundaries that characterize most familiar structures. With this idea
in mind, consider the ensemble of all patches in natural images that have a bounded
maximum gradient, in the following sense:

(3.5) max
i∈{1,...,n}

|∇i (y)|
σ̂ (y)

< η,

where | · | is length in R
2, and the gradient at location i, ∇i , is the discrete ap-

proximation that uses the difference in neighboring horizontal and vertical pixel
intensities to approximate the horizontal and vertical partial derivatives, respec-
tively. The denominator (the sample standard deviation) is included to provide a
measure of lighting invariance, which is quite precise for so-called linear data, but
rather crude for “log” data or other camera-specific manipulations of the intensi-
ties. In our experiments, we used the threshold η = 0.3.

The problem with (3.5), as it stands, is that natural images have a weak but
detectable average gradient, that runs from top-to-bottom and dark-to-light. When
using the correlation statistic, a weak gradient is as important as a strong gradient,
because of the normalization. To eliminate this effect, we defined the ensemble of
background patches to be the result of (3.5), but applied to natural images that had
first been randomly and uniformly rotated.

To collect data, we selected high-quality and uncompressed images of natural
surroundings from various web sites devoted to photography. As for the distribu-
tion on the correlation statistics, Sm, we found that these were well approximated
by zero-mean Gaussian distributions, with a variance that is somewhat dependent
on the particular template, Tm. Hence, we modeled the background distribution
on Sm with N(0, σ 2

m), and used the simple empirical estimate of σ 2
m for any given

template Tm.
iii. Gaussian random fields (“GRF background model”). We also experimented

with a Gaussian random field model, reasoning that GRFs might make for a good
fit to the smooth patches defined in (ii), given the absence of sharp boundaries
in the ensemble defined by (3.5). The GRF was generated by convolving an i.i.d.
array of standard normal random variables with a circularly-symmetric Gaussian
kernel, mean zero and standard deviation 5, to produce a random field model of
pixel intensities. The kernel bandwidth, 5, was adjusted, “by eye,” to best match
the appearance of samples from the ensemble of smooth patches. Needless to say,
these natural-image patches could be more carefully modeled (e.g., by estimating a
covariance matrix), especially given the essentially unlimited supply of examples.
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FIG. 1. Background models. Eight random samples from each of three background models (see
Section 3.2). Top row: i.i.d. uniform. Middle row: randomly selected “structureless” patches [see
(3.5)] from randomly selected natural images. Bottom row: samples from a Gaussian random field
formulated to look like the ensemble of structureless patches.

In any case, the resulting empirical distribution of Sm is again very nearly zero-
mean Gaussian, with variance that depends (weakly) on the template Tm, which is
likely a reflection of stronger versions of the central limit theorem that allow for
(restricted) dependency among the random variables. As in the previous model, we
have available an inexhaustible supply of examples for estimating σ 2

m, for each m.

Figure 1 shows eight 30 × 40 image patches sampled from each of the three
models.

Obviously, none of these background models are correct, in the sense of produc-
ing a reasonable model of what might be seen away from any given category or
small set of categories of objects. Indeed, background is a relative thing—relative
to a library of already-modeled objects. And unless we have built a rather com-
plete library, it is not reasonable to think of backgrounds as exclusively smooth
(much less i.i.d.). On the other hand, as an idealization, smooth background mod-
els are not unreasonable in that (1) they represent an appropriate goal for a system
that is learning to recognize structure, and (2) when conditioned on a well-chosen
sufficient statistic, they give excellent qualitative results as can be seen by sam-
pling, Section 4.6, and performance results as can be seen in ROC experiments,
Section 4.1.

3.3. Estimation. We follow the maximum-likelihood principle. Given a sam-
ple of image patches, y1, . . . , yN , from a given target category (e.g., instances
of right eyes), we wish to learn a category-specific appearance model, pY (y).
If we use the mixture model (3.1) for pY (y), and the correlation statistics Sm =
corr(Tm,Y ), with exponential distributions (3.2), for pSm , m = 1, . . . ,M , then the
likelihood for the mixing probabilities ε1, . . . , εM , the templates T1, . . . , TM , and
the exponents λ1, . . . , λM is (3.3), but multiplied by a factor [namely, po

Y1:N (y1:N)]
that is independent of these parameters.

Consider first the simple i.i.d. background model [model (i)], in which case, up
to the CLT, po

Sm
(s) is N(0,1/

√
n) [referring to equation (3.4)]. With this approxi-
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mation,

(3.6)

L
(
y1, . . . , yN ; {εm,Tm,λm}Mm=1

)

= po
Y1:N (y1:N)

N∏
k=1

M∑
m=1

εm

λm

1−e−2λm
e−λm(1−sm(yk))

√
n

2π
e− nsm(yk)2

2

with sm(yk) = corr(Tm, yk). Since there are no additional parameters in the denom-
inator terms, po

Sm
(sm(yk)), m = 1, . . . ,M , estimation can proceed using a version

of EM, Dempster, Laird and Rubin (1977). The only aspect of our implementation
that is worth noting is that we use a gradient ascent algorithm for computing the
templates, T1, . . . , TM , in the “M” step, constrained by the assumed standardiza-
tions,

∑
i Tm(i) = 0 and

∑
i Tm(i)2 = 1, for each m. Templates were initialized

using i.i.d. standard normal random variables, followed by a location and scale
change to satisfy the constraints, and we started with equal mixing probabilities
(εm = 1/M,∀m) and all of the λ’s set to one.

Concerning models (ii) and (iii), we have already observed that in both cases
the marginal distributions on the statistics S1, . . . , SM are well approximated as
zero-mean normals, with standard deviations that vary, to a degree, as a function
of m. Thus, the likelihood, for each of these models, has the form

(3.7)

L
(
y1, . . . , yN ; {εm,Tm,λm}Mm=1

)

= po
Y1:N (y1:N)

N∏
k=1

M∑
m=1

εm

λm

1−e−2λm
e−λm(1−sm(yk))

1√
2πσ 2

m

e
− sm(yk)2

2σ2
m

.

The equation is somewhat deceptive, since it would appear that the likelihood de-
pends on the additional parameters σ1, . . . , σM . But in fact each σm is actually
a function of the corresponding template, Tm: σm = σm(Tm). Specifically, σm is
the standard deviation of the statistic Sm = corr(Tm,Y ) under the particular back-
ground distribution po

Y (y) on Y . The i.i.d. case was special, in that the standard
deviation was known, before hand, to be well approximated by 1/

√
n.

For any given template, Tm, the standard deviation of σm(Tm) is easy to estimate
from the wealth of examples that are easily produced for each of the two models.
But the general, analytic, form of the relationship is complicated. This makes the
inner-loop maximization over Tm more difficult. Many approaches could be taken.
We chose a simple modification of the EM procedure, which involved alternat-
ing between running EM at fixed values of the standard deviations and updating
the standard deviations at fixed values of the templates. We used the parameters
delivered by the i.i.d. model for initialization. The details are presented below as
pseudocode; see Algorithm 1.

We did not experiment extensively with other approaches, some of which would
likely have been more effective. We will briefly discuss one alternative in the con-
cluding section, Section 5.
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Algorithm 1 Estimation of {εm,Tm,λm}Mm=1 under background model (ii) or (iii)

% initialization
for m = 1 to M do

εm ← 1
n

, λm ← 1, Tm ← i.i.d random template (standardized)
end for

% EM with i.i.d. background model for initial estimates of εm, λm, Tm

repeat
Expectation, equation (3.6)
Maximization, equation (3.6)

until convergence of {εm,Tm,λm}Mm=1

% alternate between sample estimates of a common background σ , and
% EM estimates of εm, λm, Tm

repeat
collect background samples
estimate σ1(T1), . . . , σM(TM) assuming common σ : σ = σ1 = · · · = σM

repeat
Expectation, equation (3.7), common and fixed σ

Maximization, equation (3.7), common and fixed σ

until convergence of {εm,Tm,λm}Mm=1

until convergence of {εm,Tm,λm,σ }Mm=1

% estimate individual σ ’s
for m = 1 to M do

estimate σm = σm(Tm) from background samples
end for

% final estimates of category-specific parameters {εm,λm}Mm=1
repeat

Expectation, equation (3.7), σ1, . . . , σM and T1, . . . , TM fixed
Maximization, equation (3.7), σ1, . . . , σM and T1, . . . , TM fixed

until convergence of {εm,λm}Mm=1

4. Experiments. The feasibility and flexibility of the approach are demon-
strated through a series of experiments with ensembles of image patches. We learn
coarse and fine features, and we learn mixture models, mixing over both features
and poses for a given category of parts or objects, including, simply, the category of
random patches from a library of natural images. We demonstrate the potential ad-
vantage of using full-data likelihoods, as opposed to models that are only partially
specified in that they include only feature probabilities rather than probabilities of
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FIG. 2. Feret database. Six examples drawn from the Feret Database. Each of the 499 faces in the
database is manually labelled with 19 landmarks, locating the eyes, eye brows, nose, mouth, chin,
and cheeks.

the pixel intensities themselves. We illustrate the fully generative nature of the ap-
proach by devising and experimenting with an approximate sampling scheme. We
examine the importance of the background model through an informal comparison
of the appearances of category-based samples, and a formal comparison of ROC
performances in an object detection problem. We also compare performances to a
generative version of principal component analysis (PCA) and to the time-honored
Gaussian mixture model.

4.1. Eye models and eye detection. The training data was extracted from 499
images taken from the Feret Database (http://www.itl.nist.gov/iad/humanid/feret/
feret_master.html). Each image in the database consists of a face and 19 manually
labeled landmarks (Figure 2). The landmarks were used to define N = 499 30×40
training patches, y1, . . . , yN , each with the right eye centered in the patch, and each
with the same orientation and scale—a selection of 70 training patches is shown
in Figure 3.

Appearance models were learned using each of the three background models
(Section 3.2) and the respective category-specific likelihoods: (3.6) for model (i)

FIG. 3. Right-eye training set. Sampling from the 499 right-eye image patches extracted from the
Feret Database and resized to 30 × 40 pixels.

http://www.itl.nist.gov/iad/humanid/feret/feret_master.html
http://www.itl.nist.gov/iad/humanid/feret/feret_master.html
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FIG. 4. Estimated templates. Each panel shows the eight templates (prototypical right-eye patches)
inferred from the training set under one of the three background models (Section 3.2), using an
approximate maximum-likelihood algorithm (Section 3.3). The corresponding parameters λ1, . . . , λ8
[see equation (3.2)], for the correlation distributions, and ε1, . . . , ε8, for the mixing weights, appear
underneath the templates. The background models for the top, middle, and bottom panels are the
i.i.d., natural-image, and GRF models, respectively (Section 3.2).

and (3.7) for models (ii) and (iii). In all cases, the number of mixing compo-
nents was set, arbitrarily, at eight (M = 8). Figure 4 shows the resulting tem-
plates, T1, . . . , T8, and mixing probabilities, ε1, . . . , ε8, as well as the exponents
λ1, . . . , λ8 that define the feature distributions. A cursory examination of the re-
sults indicates only a weak dependence on the background models, especially for
the templates. In part, this reflects the decision to initialize parameter values, un-
der models (ii) and (iii), with those already determined under model (i); see the
algorithm, and the earlier discussion. But it also raises the question of whether
generative models based on more realistic backgrounds will perform better at ob-
ject detection.

To explore this question, we compared three likelihood-ratio classifiers, one for
each of the three background models:

Ht(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if
pY (y)

po
Y (y)

> t,

−1 if
pY (y)

po
Y (y)

≤ t .

In each case, pY is the eight-component mixture model, as estimated above, and
po

Y is the corresponding background model. We used the 499 right-eye training im-
ages as positive samples, and collected 4740 random 30 × 40-pixel image patches,
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FIG. 5. Classification experiments. Left-hand panel: Features learned under each of the three
background models (Section 3.2) were used in a classification experiment, distinguishing right–
eye patches from randomly selected background patches. The three ROC curves show the aver-
aged performances from 10-fold cross-validations, under the natural-image (dashed line), GRF
(dashed/dotted line), and i.i.d. (solid line) models. Right-hand panel: Same classification experiment,
comparing (i) the eight-fold mixture model from Section 4.1, trained under the natural-image back-
ground model (dashed line—same curve as in left-hand panel); (ii) the eight-component generative
PCA model developed in Section 4.7 (dashed/dotted line); and (iii) a standard, eight-fold Gaussian
mixture model (solid line).

from natural images downloaded from the Internet, as negative samples. The set
of the positive and negative samples was partitioned into 10 equal-size subsets for
10-fold cross-validation: for each of the three background models, each of the 10
subsets was used for testing a classifier estimated from the data in the remain-
ing 9 subsets. For each background model and each testing set, a ROC curve was
swept out by varying t from zero to infinity. Then, for each background model,
the 10 ROC curves were averaged to produce the three results shown in the left-
hand panel of Figure 5 (where the curves are labeled “i.i.d. background,” “GRF
background,” and “natural-image background”).

Despite the similar appearances of samples from the smooth natural background
(ii) and GRF (iii) models, the ensemble of smooth-background patches performs
somewhat better than the GRF model. And both models significantly improve on
the i.i.d. model. Keeping in mind that each background model defines a fully gener-
ative category-specific appearance model, another means of comparison is through
an examination of samples from these generative models. See Section 4.6 where
we compare (approximate) samples from appearance models for mouths, based on
each of the three background models.

The model estimated from smooth image patches was also compared to a stan-
dard, eight-fold Gaussian mixture model and to a generative version of PCA, based
on an eight-dimensional sufficient statistic (developed in Section 4.7). Concerning
the Gaussian mixture, we estimated a single “on-target” covariance function from
the training set, and a second, single, covariance function for the “null” model from
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background patches. Performance was based on likelihood ratios. The results for
both the PCA and Gaussian mixture models are summarized in the ROC curves of
the right-hand panel of Figure 5. All of the models represented in the two panels
were trained on the same data. The Gaussian mixture model performs poorly as
compared to any one of the models built out of sufficient statistics, none of which
are Gaussian.

Going forward, we will be using the natural-image model for the background,
unless otherwise noted.

4.2. Data likelihood versus feature likelihood. Suppose, instead, we use fea-
ture likelihoods in place of data likelihoods. Are the results substantially different?
We compared an eight-template mixture model (M = 8) learned from feature like-
lihoods:

(4.1)
N∏

k=1

M∑
m=1

εm

λm

1 − e−2λm
e−λm(1−sm(yk))

to the eight-template mixture model learned previously using data likelihoods.
Feature likelihoods, (4.1), perform poorly. Indeed, up to minor variations, equation
(4.1) produces a single template; there is no meaningful mixture. See Figure 6 for
a comparison of the eight templates learned under the two approaches. Evidently,
the complete data likelihood, which includes the combinatorial (or entropic) terms
po

Y (y|Sm = sm(y)),m = 1, . . . ,M , is substantially more sensitive to the correla-
tions sm(y) = corr(T , y),m = 1, . . . ,M , resulting in an appearance model which
better fits the variability of eyes in the training data.

4.3. Mixing over pose. We cannot assume, in general, that a set of training
samples for the appearance of an object or part will include a precise pose. Al-
though the hand-labeled landmarks in the Feret Database are sufficient to compute
the poses of faces and certain parts, which we used to advantage in learning a
mixture of right-eye templates, most training sets are labeled with less detailed

FIG. 6. Data likelihood versus feature likelihood. Top row: Right-eye patches learned from the full
data likelihood. Bottom row: Patches learned using the feature likelihood. The eight templates in the
bottom row are nearly identical to each other; the resulting mixture model fails to capture the variety
of appearances seen in the training set (cf. Figure 3).
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FIG. 7. Mixing over pose. Left-hand panel: 120 training patches drawn from the 499 faces in the
Feret Database, with variations in rotation and scale. Right-hand panel: 16 learned templates, each
of size 15×18, learned from the fully generalized model, including mixtures over multiple templates,
spatial shifts, scales, and rotations.

information. Furthermore, landmarks, when provided, are usually subjective and,
therefore, variable.

Formally, we can just as well consider a mixture to be defined by prototypical
templates and their poses, rather than just by the templates themselves. To illus-
trate the idea, we created a set of image patches, of variable sizes, containing noses
extracted from the Feret Database set, but randomly rotated and scaled. Figure 7,
left-hand panel, shows 120 examples of the resulting 499 patches, constituting a
training set with unlabeled poses. Rotations and scales were chosen independently,
and from the uniform distributions on [−10°,10°] and [0.3,0.5], respectively. The
resulting images were cropped to contain the full width of the nose and, approxi-
mately, the bridge of the nose and a portion of the upper lip. The training patches
ranged in size from 16 × 18 to 30 × 33.

The goal was to learn a set of M templates, each of size 15×18, through a mix-
ture model that mixes over each of the templates at each of a discrete number of
poses. Given a scale z, a rotation r , and a (two-dimensional) translation l, let �z,r,l

be the transformation that maps a template T into the image patch that results
from first scaling, then rotating, and then translating T accordingly. In general,
the transformed template, �z,r,l(T ), is defined on a parallelogram-shaped array of
pixels. Let Z be the set of allowed scales and R the set of allowed rotations, and,
for each (z, r) ∈ Z×R, let Lz,r be the set of allowed translations. R, Z, and Lz,r

are chosen sufficiently large so that the 15 × 18 sized templates can be positioned,
through �z,r,l , to match images in the target range of scales, rotations, and trans-
lations, for example, the ensemble of noses derived from the Feret Database and
sampled in the left-hand panel of Figure 7.

The appearance model needs to accommodate multiple-sized image patches,
which can be accomplished with no important changes in the approach. Given
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an image patch y, of variable dimensions, and given a transformation �z,r,l with
z ∈ Z, r ∈R, and l ∈ Lz,r , let Az,r,l be the subset of pixels in y which are also con-
tained in �z,r,l(T ) [i.e., the intersection of the pixels in y with those in �z,r,l(T )].
Observe that Az,r,l is independent of T : prior to the transformation of pose, the
templates are all the same size (15 × 18 in the current experiment). The compo-
nent of the mixture model for y associated with the template Tm, m = 1, . . . ,M , is
itself a mixture over poses, (z, r, l). For fixed m,z, r , and l, the feature is again a
correlation, but this time confined to the pixels in Az,r,l :

sm,z,r,l � corr
(
�z,r,l(Tm)Az,r,l

, yAz,r,l

)
,

where, given any image patch ỹ, and any subset of pixels in ỹ, say B, we write ỹB
for the corresponding set of pixel intensities.

Since the correlation is normalized, we assume that the distribution on Sm,z,r,l =
sm,z,r,l(Y ) depends only on m, and reuse the model (3.2):

pSm,z,r,l
(s) = λm

1 − e−2λm
e−λm(1−s).

Finally, we assume that, given m, the choices of scale and rotation are independent,
and that given z and r , the translation, l, is uniform on Lz,r . Letting εm be the
mixing probability on templates, and δm

z and ηm
r be the conditional probabilities

on scale and rotation, given m, we arrive at the data likelihood, for mixed-sized
patches yk, k = 1 . . . ,N ,

L
(
y1, . . . , yN ; {

εm,Tm,λm,
{
δm
z , ηm

r

}
z∈Z,r∈R

}M
m=1

)

= po
Y1:N (y1:N)

N∏
k=1

M∑
m=1

∑
z∈Z,r∈R

∑
l∈Lz,r

εmδm
z ηm

r

1

|Lz,r |
λm

1−e−2λm
e−λm(1−sm,z,r,l (yk))

po
Sm,z,r,l

(sm,z,r,l(yk))
.

Here, po
Sm,z,r,l

refers to the smooth, natural-image background model [i.e., (ii) of
Section 3.2], except that the variance necessarily scales with the number of pixels
being correlated, that is, the size of Az,r,l . The natural scaling divides the variance
by nz,r,l � |Az,r,l| [e.g., consider the i.i.d. case, (i) of Section 3.2], in which case

po
Sm,z,r,l

(
sm,z,r,l(yk)

) =
√

nz,r,l

2πσ 2
m

e
− nz,r,l sm,z,r,l (yk)2

2σ2
m .

In our experiments we used the scales Z = {0.83,1,1.17}, the rotations R =
{−6.7°,0.0°,6.7°} and, as remarked earlier, a set of translations, Lz,r , chosen to
be large enough to ensure the existence of poses that would register a transformed
template image onto a sample from the target population of scaled and rotated
noses. As in Section 4.1, training was by the modified expectation/maximization
procedure presented, in the form of pseudocode, in the algorithm of Section 3.3.
The result was the sixteen varied templates shown in the right-hand panel of Fig-
ure 7, each of which appears quite natural.
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4.4. Coarse representations. Many considerations go into selecting good fea-
tures for category detection. Eyes, noses, and mouths are obviously informative
for the detection of faces, and nearly essential for the identification of individuals
or ethnic characterization. Larger features, encompassing entire faces, are gener-
ally more specific than individual parts, but they are also more complex and typ-
ically too brittle for the identification of individuals. Ullman, Vidal-Naquet and
Sali (2002) have argued that there is an intermediate range of complexity that
characterizes the most informative features for a given classification task. There
is also a computational tradeoff: most practical vision algorithms proceed from
coarse-to-fine. A first pass over a large region narrows the search for a target ob-
ject using features of low computational complexity, followed by an increasingly
more focused, selective, and computationally intensive exploration [cf. Blanchard
and Geman (2005)].

One way to produce low-complexity features for a given category, such as faces,
is to build templates from down-sampled images. The resulting templates are of
intermediate complexity, as argued for by Ullman et al., and of low computational
cost, given their reduced sizes as measured by numbers of pixels. At the same time,
it is desirable to build an appearance model of the original data, meaning a model
of pixel intensities at full resolution. Among other reasons, this allows for the direct
comparisons of likelihoods across scales. Both goals can be accomplished through
a simple change in the definition of the correlation feature.

To illustrate, we experimented with appearance models for whole-face images
using down-sampled data. Specifically, we down-sampled each image of a face
in the Feret Database to a 10 × 10 image patch. Let D(y) be the down-sampled
image, and, given a 10 × 10 template, Tm, define the correlation feature sm(y) =
corr(Tm,D(y)). No further changes are required: we use the mixture model (3.1),
with (truncated) exponential distribution (3.2) on sm, and arrive at the likelihood
(3.7), which is approximately maximized by the algorithm of Section 3.3. Figure 8,
left-hand panel, shows 24 of the 499 downsampled faces. We trained M = 8 coarse
templates, resulting in the 8 prototypical low-resolution faces seen in the right-
hand panel.

We emphasize that the likelihood is still on the full-resolution pixel data, that is,
we are still working from a generative model on pixel intensities [sm = sm(y) and
equation (3.1) is unchanged]. Indeed, if we let Dα represent down conversion by
α, in rows and columns, and if we assume that Dα ◦Dβ = Dαβ , then the templates
can be used to define a mixture model on any resolution higher than 10 × 10.

What would samples from the full-resolution model look like? Shortly, we will
introduce an approximate sampling method which can be quite effective for eval-
uating the implications of the different modeling approaches (Section 4.6), espe-
cially when it comes to choosing an appropriate model for background. But sam-
pling from a full-resolution distribution using a low-resolution sufficient statistic is
quite challenging, and beyond the reach of our approximation. On the other hand,
we could implement a brute-force approach, which is already instructive merely
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FIG. 8. Coarse representation. Left-hand panel: 24 of the 499 10 × 10 down-converted training im-
ages. Right-hand panel: 8 10 × 10 templates learned from the coarsened (down-sampled) examples,
under a generative mixture model of the full-resolution images.

as a thought experiment. Refer to equation (3.1). Here, M = 8 and, along with the
eight templates shown in Figure 8, the parameters specifying the mixing weights
(ε1, . . . , ε8) and probability distributions of the sufficient statistics (pS1, . . . , pS8 )
are also estimated. By “brute-force sampling,” we mean this: (i) choose a mix-
ing component (say “m”) from the distribution specified by the mixing weights;
(ii) assign a value, Sm = s, to the corresponding sufficient statistic using the corre-
sponding distribution, pSm(s); and (iii) (the brute-force part) search a large library
of images for full resolution patches, y, that satisfy

sm(y)
.= 〈Tm,y〉

σ̂ (y)
≈ s

in other words, sample from p0
Y (y|SM = s). Typically (except for very unusual

values of s), the chosen patch will be either a face, or something that looks very
much like a face. The low-resolution “blocking” artifacts apparent in the learned
templates (Figure 8) will not be visible.

4.5. A mixture model for natural image patches. The statistics of small
randomly-selected image patches have been studied extensively. Most models be-
long to one of two categories: linear combinations of a set of patches that serve as
a basis, possibly not orthonormal and oftentimes overcomplete, and random field
models, which may or may not have a local neighborhood system. The approach
to modeling studied in this paper is through mixtures, which is different from the
usual random field models, which are rarely mixtures, and from the basis-type
models in that only one component is active for any one sample, as opposed to a
linear combination of components.

Examples of random field models include models based on learned filters,
by Zhu and colleagues [e.g., Zhu and Mumford (1997), Zhu, Wu and Mumford
(1998)], and Hinton’s product-of-experts model [Hinton (1999)], which is also the
starting point for the Markov random field models of Roth and Black [“Fields
of Experts,” Roth and Black (2009)]. The more frequent approach is through ba-
sis elements, which might simply be the large eigenvalue components (patches)
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from a principal component analysis, as in the construction of structured back-
ground models for face detection in the work of Rajagopalan, Chellappa and
Koterba (2005), or the use of sparse and overcomplete bases, as in the models
by Olshausen and Field (1997), Aharon, Elad and Bruckstein (2006), Lee et al.
(2007), and Mairal et al. (2009), wherein the emphasis is often on efficiently learn-
ing the bases, in addition to data fidelity. Finally, we mention the work of Welling,
Hinton and Osindero (2003), which combines both random fields (product-of ex-
perts) and sparse coding, using an overcomplete basis.

For small image patches, another approach to modeling is through mixtures.
We experimented with the correlation statistic, leaning M = 16 10 × 10 templates
from a collection of 12,753 15 × 15 image patches, randomly sampled from 59
natural images; see Figure 9 for some examples of the training patches. As in
Section 4.3, we mixed over poses as well as templates, but here we allow only
translations. There are 25 ways to situate a 10 × 10 template within a 15 × 15
image patch. In order to avoid learning separate templates for each possible shift
of a particular structure, we defined the mixture over poses to correspond to these
25 localizations of the template within the image patch. By mixing over poses,
instances of a particular structure that are situated at different locations in different
15 × 15 image patches are aggregated, and end up sharing a common template
[as was done, similarly, in the approach taken by Papandreou, Chen and Yuille
(2014)]. Following the notation developed in Section 4.3, let Al , be the locations
of the 100 pixels within the 15 × 15 image patch, y, selected by translation l =
1, . . . ,25, and let yAl

be the corresponding pixel intensities. Then, for a given
10×10 template, Tm, and a given translation l, sm,l(y) = corr(Tm, yAl

). As for the
mixing probabilities, the natural assumption is that the translation, l, is uniform,
independent of m.

Recognizing that most small image patches have little or not structure, we in-
troduced an additional statistic, s0, and an additional mixing component, m = 0,
to model structureless patches. A simple and effective statistic for this purpose is
the sample variance of yAl

,

s0,l(yAl
) = 1

100

∑
i∈Al

(yi − ȳ)2.

As for the distribution, pS0,l
(s), reasoning that a structureless background patch is

more likely to have low variance than high variance, we chose

(4.2) pS0,l
(s) = αλ0e

−λ0s,

where αλ0 is the normalization, which depends on the maximum possible value for
s, which in turn depends on the representation of pixel intensities. As it turns out,
pS0,l

(s) is quite peaked at zero, meaning that λ0 is sufficiently large that we can
ignore the upper limit and simply model pS0,l

(s) by the exponential distribution
λ0e

−λ0s , s ≥ 0.
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FIG. 9. Mixture model for natural image patches. Left-hand panel: 600 examples from a training
set of 12,753 randomly selected 15 × 15 natural-image patches. Right-hand panel: the 16 10 × 10
templates learned under a 17-fold mixture model. The additional mixing component, which carries
78% of the mass, uses the sample variance as a sufficient statistic and a distribution that encourages
small values; see Section 4.5.

In summary, the model for a 15 × 15 image patch y is

pY (y) = po
Y (y)

M∑
m=0

25∑
l=1

1

25
εm

pSm,l
(sm,l(yAl

))

po
Y (sm,l(yAl

))
,

where pSm,l
is the probability developed in Section 3.1 when m > 0, and the prob-

ability in (4.2) when m = 0. As usual, we used background model (ii), of Sec-
tion 3.2, and the algorithm developed in Section 3.3 for approximate maximum
likelihood learning of the parameters ε0, λ0, and {εm,Tm,λm},m = 1, . . . ,M . The
resulting 16 templates are displayed in the right-hand panel of Figure 9. As ex-
pected, the “null” component, m = 0, carried most of the mass: ε0 ≈ 0.78. Also
as expected, the learned templates represented a collection of familiar structures,
including boundaries, most typically vertical or horizontal, but also at other ori-
entations, followed, in likelihood, by corners and lines, and then other less easily
interpreted structures.

4.6. Sampling. When possible, examining samples from a generative model
of images, or image patches, is an excellent way to evaluate the quality of the
model. Using mouths instead of right eyes, we repeated the appearance model-
ing and inference methods of Section 4.1, obtaining a mixture of eight template-
based distributions characterized by eight mixing probabilities, eight templates,
and eight exponential parameters ({εm,Tm,λm},m = 1, . . . ,8). We devised an ex-
act method for sampling under an i.i.d. Gaussian background model [a special case
of model (i) of Section 3.2], and a closely related approximate method for mod-
els (ii) and (iii) (natural-image and Gaussian random field, respectively). By these
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FIG. 10. Sampling the generative model. An eight-fold mixture model for the appearance of mouths
was trained on the Feret Database, under each of three background models (Section 3.2). Left-hand
panel: exact samples under the i.i.d. model. Middle panel: approximate samples under the GRF
model. Right-hand panel: approximate samples under the natural-image model.

methods, eighteen samples for each of the three appearance models, corresponding
to the three background models, were generated, and are shown in Figure 10. Most
would agree that the subjective impression correlates with the classification perfor-
mance, as measured by the experiments done in Section 4.1, where the best ROC
performance was achieved by the model based on natural-image patches, closely
followed by the GRF model, and with both outperforming the i.i.d. model.

When considering the appearance of a patch it makes sense to consider two
patches, y and y′, as equivalent if they are equivalent up to scale and location of
their intensities, meaning that y′ = αy +β . After all, both parameters are absorbed
in the choices made for display on a piece of paper or on an electronic screen.
With this in mind, we search for standardized samples, that is, samples for which∑

i∈B yi = 0 and
∑

i∈B y2
i = 1, where B is an index set for the array of pixels in y

and n = |B|. Recall, from Section 3.1, that the templates, Tm, are also standardized.
The basic idea for sampling is projection: choose y ∼ po

Y , m ∼ {ε1, ε2, . . . , εM},
and sm ∼ pSm , and project y onto the surface defined by 〈Tm, z〉 = sm. Here, pro-
jection is easy because we chose sufficient statistics that define planar (affine) sur-
faces. (Sampling could be a great deal more difficult, if not entirely intractable, for
various other choices for sm.) In detail, with reference to Figure 11, let E ⊆ R

n

be the n − 1 dimensional subspace defined by
∑

i∈B yi = 0, and let Sn−1(r) be
the sphere in E, centered at the origin and having radius r . [So Sn−1(r) is an
n − 2 dimensional manifold.] An exact sample, under model (i) with i.i.d. Gaus-
sian background, is generated as follows:

1. Choose m ∈ {1,2, . . . ,M} according to the mixing probabilities {ε1, ε2, . . . ,

εM} and then choose sm ∼ pSm , as defined in equation (3.2). Let Osm be the n − 2
dimensional affine subspace of vectors z ∈ E for which 〈Tm, z〉 = sm, (Osm = {z ∈
E : 〈Tm, z〉 = sm}), keeping in mind that Tm ∈ E.

2. Choose y from the background model and project onto E, which is the same
as subtracting ȳ: y → y − ȳ.

3. Project y − ȳ onto Osm , and denote the result by ŷ.
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4. Observe that S̃n−2 � Sn−1(1)∩Osm is a sphere in n−2 dimensions centered
at the projection of Tm onto Osm . The straight line passing through ŷ and the center
of S̃n−2 intersects S̃n−2 at two points. Move ŷ to the closer of the two (“radial
renormalization”), and denote the result by ỹ.

Then ỹ is a standardized sample from the mixture distribution pY (y), defined in
(3.1). The reason is simple: By direct sample, the statistic sm has the right distri-
bution. What is more, under the i.i.d. Gaussian background model, all points on
S̃n−2 are equally likely, a property that is shared by ỹ due to the circular sym-
metry of the random choice y − ȳ. Hence, up to equivalence, ỹ is a sample from
po

Y (y|Sm = sm).
What about approximate samples? The key to exact sampling under the i.i.d.

Gaussian model is the independence of PT ⊥
m

(Y − Ȳ ) from PTm(Y − Ȳ ), under po
Y ,

where for any subspace U we write PU for projection onto U ∩E. So, for example,
it is sufficient that PT ⊥(Y − Ȳ ) is independent of PT (Y − Ȳ ) for arbitrary T ∈ E,
which holds trivially in the case of i.i.d. Gaussian. For approximate sampling, one
of these conditions needs to be approximately true. This will be difficult to verify
for the GRF and implicitly-defined natural-image models, although some analytic
evidence in favor of the approximation can be found in the analysis of projection
pursuit by Diaconis and Freedman (1984), and the later refinements and extensions
by other authors, for example, by Dümbgen and Del Conte-Zerial (2013). These
results imply that the low-dimensional subspaces of PT ⊥(Y − Ȳ ) will typically be
nearly independent of PT (Y − Ȳ ), a step in the right direction. In any case, for
the examples in Figure 10, we simply used the exact procedure outlined above,
whether or not po

Y was i.i.d. Gaussian.

4.7. PCA and high-dimensional sufficient statistics. There is nothing about
our approach that requires one-dimensional features, as in the correlations studied
in the previous examples. From an analytic (as opposed to computational) point of
view, the development is unchanged when s → �s.

A simple way to explore the idea of multidimensional features is to choose
them, a priori, for a given category of image patches. The difference, then, is that
these features do not have to be estimated as part of the generative model, as was
done in the algorithm introduced in Section 3.3. As a specific example, consider
adopting the first eight principal components to define, through correlations, an
eight-dimensional feature. The principal components are estimated from the sam-
ple covariance matrix in the usual way, and what remains is to model and estimate
the joint distribution on the eight correlations, one for each of the eight principal
components.

Formally, let T1, . . . , T8 be the eight eigenvectors with largest eigenvalues of
the sample covariance matrix, based on N training samples, y1, . . . , yN , from a
particular category of interest. See Figure 12 for the eight principal components
derived from the 499 right-eye image patches used to train the mixture model in
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FIG. 11. Projection sampling. The goal is to sample from the mixture pY (y) = ∑M
m=1 εm ×

pSm
(sm(y))po

Y (y|Sm = sm(y)), modulo standardization of y, for a given background distribution

po
Y . The picture is as seen from within the subspace E � {z ∈ R

n : ∑
i zi = 0}. The sphere of ra-

dius r within E, centered at the origin, is Sn−1(r), and Osm = {z ∈ E : 〈Tm, z〉 = sm}. Choose
m ∼ {ε1, . . . , εM }, sm ∼ pSm

, and y ∼ po
Y . Project y onto E to get y − ȳ, and then onto Osm to

get ŷ. Finally, move ŷ to the nearest point in Osm ∩ Sn−1(1), to get the sample, ỹ. Sampling is exact
when po

Y is i.i.d. Gaussian and approximate for models (ii) and (iii) of Section 3.2.

Section 4.1. Now define eight corresponding statistics, through correlation, with
the eigenvectors playing the role of templates: sm(y) = corr(Tm, y), m = 1, . . . ,8.
It would not make sense to think of the eigenvectors as defining mixing compo-
nents, since they derive from elements of a basis rather than a set of prototypical
appearances. But it does make sense to think of them as defining a single, eight-
dimensional feature, �s = (s1, . . . , s8), sufficient for a single (M = 1) mixing com-
ponent. [A related model, also using PCA templates, was proposed by Feldman
and Younes (2006), using quantized inner products, 〈Tm,y〉,m = 1, . . . ,M , to de-
fine a feature vector �s with ternary components. Feldman and Younes go on to learn
a joint distribution on a sparse array of these feature vectors.] The only important
difference from earlier experiments is that we need to devise an eight-dimensional
joint distribution, p�S(�s), rather than M > 1 one-dimensional distributions. A sim-
ple, more-or-less canned, approach is to use a Gaussian copula: estimate the in-
verse cumulative distribution of each of the statistics, transform the statistics to
standard normals, and estimate the resulting means and covariances.

We evaluated the results by both sampling and via the classification experiment
illustrated in the right-hand panel of Figure 5. Classification performance with the
natural-image background model was almost as good as that of the mixture of

FIG. 12. PCA templates. The eight largest-eigenvalue principal components estimated from 499
30 × 40 standardized right-eye image patches.
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FIG. 13. Samples from PCA-based mixture model. The 8 principle components shown in Figure 13
were used to build an appearance model for right eyes, under the natural-image background model,
that is, model (ii) of Section 3.2. Figure shows 18 approximate samples, generated by the projection
method, Section 4.6.

eight univariate sufficient statistics developed in Section 4.1, and much stronger
than the Gaussian mixture model. As for samples, these were generated using the
approximation developed in Section 4.6, the only difference being that Osm is now
an n − 9 (instead of n − 2) dimensional affine subspace: Osm = {z ∈ E : 〈Tm, z〉 =
sm,m = 1, . . . ,8}. Eighteen examples are shown in Figure 13.

4.8. Training: Variations on the theme. We have argued for a more-or-less
classical statistical approach to image modeling, based upon some of the time-
honored tools of the trade: maximum-likelihood estimation, sufficiency, and likeli-
hood ratios. Some approximations were necessary, especially in the training phase
in which the sufficient statistics, themselves, were parametrized (by templates) and
learned. One simplification, suggested by two of the referees, would be to learn
templates from a traditional model, such as the Gaussian mixture model, and then
simply use these as though they were the result of the more elaborate (yet still
only approximate) MLE approach of Section 3.3. For example, using the eight
means from an eight-fold Gaussian mixture model, constrained to have a common
(but learned) covariance matrix, produces templates that are not so dissimilar from
those that we estimated by approximate MLE. In terms of ROC performance, the
background model remains important; best performance is consistently achieved
under the “natural” model, though with somewhat higher error rates when com-
pared to MLE templates.

Perhaps the best of both worlds would come from initializing MLE with the
results of a Gaussian mixture model. Indeed, whether by this or other variations,
we would be disappointed if there were not better ways to exploit the framework.

5. Discussion. The essence of the approach is to model the distribution on
the appearance of a category of parts or objects through a factorization: a low-
dimensional distribution determines the values of category-specific features, and
a high-dimensional “background distribution” determines pixel intensities by con-
ditioning on the values of the features. The distribution on features can generally
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be learned with modest sample sizes, due to its low-dimensionality, but the fea-
tures themselves are difficult, if not impossible, to learn without a model that fully
specifies the data, that is, the pixel intensities within patches of images that contain
the parts or objects of interest. The bulk of the dimensions lie in the conditional
distributions on intensities given the values of the features. For these, we “borrow”
from a background distribution, which is intended to model structureless image
regions, as might be found in natural image patches that lack significant bound-
aries. There is no need to explicitly model the background distribution; only its
low-dimensional marginal distributions on the features enter into the likelihood
equations, or, for that matter, the likelihood ratios used to choose between compet-
ing categories.

The approach has several advantages. Since the likelihood is on the data, rather
than on the features, the features themselves can be learned. In most of our experi-
ments, we constructed features from correlations with templates, and then learned
the templates from the likelihood equations, along with parameters characteriz-
ing the feature distributions, and, in the case of mixtures, the mixing probabilities.
By considering mixtures over features and poses, we can learn templates from
examples with unspecified and varied translations, scales, and rotations. For each
template, the process of maximizing likelihood is essentially one of automatically
aggregating data over a specified region, the pose space. Pixel-level generative
models also have the advantage that they can be inspected visually by examining
samples from the distribution, and we have provided a highly efficient algorithm
for producing these, at least approximately. Most importantly, and our primary mo-
tivation, is that category-specific appearance models are an important component
of a fully generative Bayesian model, which we advocate because it facilitates a
comparison between competing interpretations of an image. Different categories
are characterized by different features. A proper competition between opposing
interpretations requires a comparison of the likelihoods of common data—the
pixels—as opposed to category-specific features. In particular, if we use the same
background distribution for all categories, then the factorization “trick” ensures
that the likelihood ratio between two categories is easily computed.

Have we gone too far? A fully generative model such as ours is not likely to
be pixel-level faithful to appearances in real scenes. Or, more to the point, is there
really a universal conditional null distribution that supports meaningful compar-
isons of likelihood ratios across the spectrum of parts and objects? Maybe not, but
it is not unreasonable to formalize the learning problem as one of successive ap-
proximations, involving an increasingly rich latent structure along with a growing
vocabulary of ever-more-accurate appearance models. From this point of view, the
background (or “combinatorial”) factor in our model becomes increasingly irrel-
evant as the dimensionality and numbers of sufficient statistics increases. As for
generative versus discriminative models, the jury is out, but in the meantime we
subscribe to Grenander’s maxim: “pattern synthesis equals pattern analysis.”
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Many directions for generalization come to mind. The last example (Sec-
tion 4.7), which uses a multidimensional feature for a single-component model,
suggests building mixtures of multi-dimensional features. Although our example
used principal components as templates, there is no need to assume a priori fea-
tures; these too could have been learned, for example, with a different set for each
mixing component, or a shared set in which the components are distinguished by
component-specific joint distributions. As for the background distribution on the
feature vectors, the copula method used in Section 4.7 could be copied by simply
training, instead, on samples from po

Y , which are always plentiful.
And many challenges remain unaddressed, for example, the choice for the num-

ber of mixing components, or more generally, the familiar tradeoff between model
complexity and sample size. Bayesian approaches, or what amounts to the same
thing, penalized likelihoods, come to mind, but we have not tried these. Another
challenge is the lack of an exact “M” step for the templates (or features, in gen-
eral), in the EM iteration. The problem is that the variance of the features under
the background model is a complex function of the templates, σm = σm(Tm), for
which there is generally no analytic form, especially in the case of an implicitly
defined background distribution, as in model (ii) of Section 3.2. The algorithm in-
troduced in Section 3.3 sidesteps the issue by doing a single update of the σ ’s in the
penultimate step. A better choice, based on the ease with which σ(Tm) can be esti-
mated for any given Tm, might be to approximate the full gradient, including terms
involving σ(Tm), by using a discrete version of gradient ascent. But this would
introduce its own challenges, since the likelihood is not a well-defined function
of the parameters without additional constraints, as is often true of mixture mod-
els. Density functions can be made infinite for some of the mixing components,
for example, by driving σm to zero or λm to infinity. Unfortunately, even for com-
mon mixture models, including the prototypical mixture of Gaussians, heuristic
approaches are still the state of the art.

Finally, we want to highlight the imposing challenge of building a coherent
Bayesian model of full images, as opposed to just image patches. Grammars and
other compositional structures have an apparent role to play in capturing a priori
constraints on the relationships among parts that make up objects, and objects that
make up scenes [Allassonnière, Amit and Trouvé (2007), Amit and Trouvé (2007),
Felzenszwalb (2013), Felzenszwalb et al. (2010), Fergus, Perona and Zisserman
(2003), Jin and Geman (2006), Ommer and Buhmann (2006), Yuille (2011), Zhu,
Chen and Yuille (2009), Zhu and Mumford (2006), to highlight just a few ex-
amples]. But these models still need to be connected to the image, presumably
through a conditional distribution on images, conditioning on the (latent) scene
representation. As we have argued, pixel-level data modeling, as opposed to fea-
ture modeling alone, might ultimately give the best performance. But a full-blown
generative model of pixel intensities for entire scenes will almost certainly have to
accommodate multiple, simultaneous representations in many areas of the image.
Humans annotate an object or part with a multitude of attributes, all of potential
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relevance in and of themselves, and all of potential importance to the disambigua-
tion of other parts of the image. A face can appear old and lively, sun-worn and
lean, with intense eyes and narrow nose, all at the same time. It is artificial, and
likely unnecessary, to segment the eyes or a nose from the surrounding parts of
the face, or the head from the neck, or the neck from the torso. And it is impos-
sible to imagine a spacial segmentation of attributes like old, lively, sun-worn, or
lean. Each has something to say about features of the face. It follows that indi-
vidual pixel intensities will participate in many of these features and, therefore,
contribute to many sufficient statistics. The challenge is that the sufficiency ap-
proach leads to likelihood ratios in which the denominator is the joint distribution
on the sufficient statistics under the null (background) model, and this distribution
will evidently depend on the instance-by-instance poses of the represented parts,
for example, the details of the placements of the corresponding templates, in the
case of correlation statistics. What sorts of general and computationally efficient
approximations are available for these joint distributions?

APPENDIX

A.1. Minimizing K-L divergence. The goal is to show that p̃Y (y) =
pS(s(y))po

Y (y|S = s(y)) minimizes D(po
Y ||p̃Y ), under the constraint that s(Y ) ∼

pS when Y ∼ p̃Y .
We can always factor po

Y (y) as po
S(s(y))po

Y (y|S = s(y)). Similarly, if, under
p̃Y , s(Y ) ∼ pS , then p̃Y (y) = pS(s(y))p̃Y (y|S = s(y)) and

D
(
po

Y ||p̃Y

) =
∫
y
po

S

(
s(y)

)
po

Y

(
y|S = s(y)

)
log

po
S(s(y))po

Y (y|S = s(y))

pS(s(y))p̃Y (y|S = s(y))
dy

=
∫
t

∫
y:s(y)=t

po
S(t)po

Y (y|S = t)

[
log

po
S(t)

pS(t)
+ log

po
Y (y|S = t)

p̃Y (y|S = t)

]
dy dt

= D
(
po

S ||pS

) +
∫
t
D

(
po

Y (·|S = t)||p̃Y (·|S = t)
)
dt

≥ D
(
po

S ||pS

)
with equality, in the last step, if p̃Y (y|S = t) = po

Y (y|S = t) for every t and y.
The argument that p̃Y (y) = pS(s(y))po

Y (y|S = s(y)) also minimizes D(p̃Y ||
po

Y ) is almost identical.

A.2. Correlation when the background is white noise. Among the three
background models introduced in Section 3.2, the i.i.d. model is the least realistic
but the most computationally convenient. We used it to initialize parameter val-
ues when learning templates, template distributions, and mixing probabilities. Its
usefulness rests, in part, on the fact that the correlation, corr(T , y), is then asymp-
totically (in the large-patch limit) normal, as asserted in the following lemma.
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LEMMA. Let Y (n) = (y
(n)
1 , y

(n)
2 , . . . , y

(n)
n ) and ȳ(n) = 1

n

∑n
i=1 y

(n)
i , where

y
(n)
1 , y

(n)
2 , . . . , y

(n)
n are i.i.d. random variables from a pixel-intensity distribution

G with finite third moment E[(y(n)
i )3]. G does not depend on n. Fix a sequence

of (standardized) templates T (n) = (t
(n)
1 , t

(n)
2 , . . . , t

(n)
n ), where

∑n
i=1 t

(n)
i = 0 and∑n

i=1(t
(n)
i )2 = n, and ∣∣t (n)

i

∣∣ ≤ M,

for some constant M independent of n. Then

√
n corr

(
Y (n), T (n)) =

∑n
i=1 t

(n)
i (y

(n)
i − ȳ(n))√∑n

i=1(y
(n)
i − ȳ(n))2

converges in distribution to the standard normal, N(0,1), as n → ∞.

PROOF. Based on a version of Lyapunov’s central limit theorem [cf. Chung
(2001)]. Let xi = t

(n)
i (y

(n)
i − ȳ(n)) and s2

n = ∑n
i=1 E[x2

i ]. Then E[xi] = 0 and

s2
n =

n∑
i=1

E
[(

t
(n)
i

(
y

(n)
i − ȳ(n)))2] = nE

[(
y

(n)
1 − ȳ(n))2]

.

Hence, s3
n = O(n3/2). Now since E[(y(n)

i )3] < ∞
rn �

n∑
i=1

E
[∣∣t (n)

i

(
y

(n)
i − ȳ(n))∣∣3] ≤ MnE

∣∣y(n)
1 − ȳ(n)

∣∣3 = O(n)

and

lim
n→∞

rn

s3
n

= O

(
1√
n

)
−→ 0.

This is the Lyapunov condition and, consequently,∑n
i=1 t

(n)
i (y

(n)
i − ȳ(n))√

nE(y
(n)
i − ȳ(n))2

=
∑n

i=1 xi

sn
−→ N(0,1).

Furthermore, by the law of large numbers,

1

n

n∑
i=1

(
y

(n)
i − ȳ(n))2 −→ E

[(
y

(n)
1 − ȳ(n))2]

in probability.
Finally, by an application of Slutsky’s theorem,

√
n corr

(
Y (n), T (n)) =

∑n
i=1 t

(n)
i (y

(n)
i − ȳ(n))√

nE(y
(n)
i − ȳ(n))2

·
√

E(y
(n)
i − ȳ(n))2√

1
n

∑n
i=1(y

(n)
i − ȳ(n))2

−→ N(0,1)

and the proof is complete. �
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REMARKS. 1. The only condition on G is that the third moment exists, so
the theorem applies to the commonly used Gaussian and uniform distributions
on intensities. Referring to Section 3.2, the upshot is that the statistic, sm(yk), is
approximately N(0, 1

n
), which is equation (3.4).

2. The dimension, n, does not have to be all that large. It is easy to experi-
ment with small patches, say n = 10 × 10 = 100, Y 100 ∼ U{0,1, . . . ,255}100, and
T 100 ∈ {0,1, . . . ,255}100, at which point the approximation is already excellent.
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